NI 9375

16 DI/16 DO; 30 В постоянного тока; каналы цифрового ввода 7 мкс, втекающий ток; каналы цифрового вывода 500 мкс, вытекающий ток

- Разъем DSUB или пружинные клеммы
- Изоляция между банками каналов цифрового ввода и цифрового вывода: 60 В постоянного тока
- Изоляция канал-земля: 60 В постоянного тока, категория I

NI 9375 представляет собой модуль с комбинацией каналов цифрового ввода и цифрового вывода для систем CompactDAQ и CompactRIO. Линии цифрового ввода совместимы с логическими уровнями 24 В, а линии цифрового вывода совместимы с сигналами от 6 В до 30 В в зависимости от внешнего источника питания. Модуль NI 9375 выдерживает броски напряжения 1000 В_{скз} между каналом и землей. Модуль работает с сигналами промышленных логическими уровней напряжения и сигналами для прямого подключения широкого диапазона промышленных переключателей, датчиков и других устройств.

	СРАВНЕНИЕ МОДУЛЕЙ ЦИФРОВОГО ВВОДА-ВЫВОДА С-СЕРИИ				-СЕРИИ
Наименование продукта	Уровни сигналов	Каналы	Направление	Частота обновления	Подключение
NI 9375	12 B, 24 B	8 DI, 8 DO	Ввод: втекающий ток Вывод: вытекающий ток	7 мкс (DI), 500 мкс (DO)	Пружинные клеммы, DSUB
NI 9421	от 12 В до 24 В	8 DI	Ввод: втекающий ток	100 мкс	Винтовые клеммы, Пружинные клеммы, DSUB
NI 9425	12 B, 24 B	32 DI	Ввод: втекающий ток	7 мкс	DSUB
NI 9472	от 6 В до 30 В	8 DO	Вывод: вытекающий ток	100 мкс	Винтовые клеммы, Пружинные клеммы
NI 9476	от 6 В до 30 В	32 DO	Вывод: вытекающий ток	500 мкс	DSUB

Обзор модулей NI С-серии

NI предоставляет более 100 модулей С-серии для приложений измерений, управления и обмена данными. Модули С-серии могут подключаться к любому датчику или шине и позволяют выполнять измерения с высокой точностью, удовлетворяющие требованиям сложных приложений сбора данных и управления.

- Преобразование сигналов, соответствующее типу измерения, подключение к множеству датчиков и сигналов
- Различные варианты изоляции: между банками, между каналами, между каналом и землей
- Температурный диапазон от -40 °C до 70 °C для удовлетворения требованиям различных приложений и условиям окружающей среды
- Подключение «на лету»

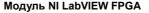
Большинство модулей С-серии поддерживается как платформой CompactRIO, так и CompactDAQ, и вы можете переставлять модули из одной платформы в другую без модификаций.

CompactRIO

СотрасtRIO объединяет открытую встраиваемую архитектуру с небольшими размерами и экстремальной надежностью и модули С-серии в платформу, основанную на архитектуре реконфигурируемого ввода-вывода RIO, поддерживаемой мощью NI LabVIEW. Каждая система содержит FPGA для пользовательского таймирования, запуска и обработки с использованием широкого диапазона доступного модулей ввода-вывода для удовлетворения требований любого встраиваемого приложения.

CompactDAQ

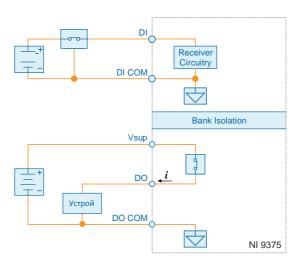
CompactDAQ - портативная надежная платформа сбора данных, в которой интегрированы подключаемость, сбор данных и преобразование сигналов с модульным вводомвыводом для прямого подключения к любому датчику или источнику сигнала. Используя CompactDAQ с LabVIEW, вы можете легко настроить сбор, анализ, визуализацию, а также управление вашими результатами измерений.



Программное обеспечение

LabVIEW Professional Development System для Windows

- Использование современных программных инструментов для разработки больших проектов
- Автоматическая генерация кода с помощью мастеров DAQ Assistant и Instrument I/O Assistant
- Использование продвинутого анализа результатов измерений и цифровой обработки сигналов
- Использование преимуществ открытого подключения DLL, ActiveX и объектов .NET
- Создание DLL, исполняемых файлов и инсталляторов MSI


- Разработка приложений FPGA для оборудования NI RIO
- Программирование в той же графической среде, которая используется для разработки приложений на ПК и приложений реального времени
- Выполнение алгоритмов управления с частотой цикла до 300 МГц
- Реализация пользовательской логики синхронизации и запуска, цифровых протоколов и алгоритмов цифровой обработки сигналов
- Встраивание существующего кода HDL и IP сторонних фирм, включая функции IP-генератора Xilinx
- Приобретается как часть комплекта LabVIEW Embedded Control and Monitoring Suite

Модуль NI LabVIEW Real-Time

- Разработка детерминированных приложений реального времени в среде графического программирования LabVIEW
- Загрузка на выделенное оборудование NI или сторонних производителей, обеспечивая надежность выполнения и широкий спектр возможностей ввода-вывода
- Использование преимуществ встроенного ПИД-регулирования, обработки сигналов и функций анализа
- Автоматическое использование преимуществ многоядерных ЦП или ручное задание загрузки процессоров
- Использование преимуществ ОС реального времени, поддержка инструментальных средств разработки и отладки встраиваемых приложений
- Приобретается отдельно или как часть комплекта LabVIEW

Схема NI 9375

- Банк из 16 каналов цифрового ввода и банк из 16 каналов цифрового вывода в модуле NI 9375 изолированы друг от друга и от земли.
- Встроенное в NI 9375 ограничение сигналов тока, подключенных к DI.
- Входы NI 9375 для втекающего тока (sinking), которые обеспечивают путь к общей точке (COM), пока устройство, подключенное к NI 9375 с выходами вытекающего тока (sourcing), управляет током или прикладывает напряжение ко входу DI.
- Выходы NI 9375 для вытекающего тока (sourcing), когда канал включен, ток течет от источника питания V_{sup} к выходу DO.

Совет: Для получения дополнительной информации о входах sinking и выходах sourcing, посетите *ni.com/info* и введите информационный код sinksource.

Допустимый ток на модуль

Непрерывное значение выходного тока модуля NI 9375 ограничено. Используйте следующее уравнение для определения, соответствует ли заданным пределам полный ток нагрузки включенных каналов модуля.

Рисунок 1. Уравнение полного тока модуля

$$\left(l_{\rm DOO}\right)^2 + \left(l_{\rm DOO}\right)^2 + ... + \left(l_{\rm DOOO}\right)^2 = {\rm Total\ Module\ Current}$$

Например, для модуля NI 9375 с пружинными клеммами, двумя каналами с током нагрузки по 250 мА, шестью каналами с током нагрузки 125 мА и восемью каналами с током нагрузки 62 мА непрерывный ток нагрузки модуля равен:

Рисунок 2. Пример расчета полного тока модуля

$$\{[(250 \text{ mA})^2 * 2] + [(125 \text{ mA})^2 * 6] + [(62 \text{ mA})^2 * 8]\} = 0.25 \text{ A}^2$$

Технические характеристики NI 9375

Приведенные характеристики типичны при температуре окружающей среды от -40°C до 70°C, если не указаны иные условия эксплуатации. Все напряжения даются относительно СОМ, если не указано иное.

Внимание! Не используйте NI 9375 способом, отличным от приведенного в настоящем документе. Неправильное использование продукта может быть опасным. Вы можете повредить встроенную защиту изделия, если изделие выйдет из строя любым образом. При повреждении продукта верните его в NI для ремонта.

Характеристики ввода-вывода

Количество каналов	32: 16 каналов цифрового ввода и 16 каналов
	цифрового вывода

Ввод цифровых сигналов

Тип входной цепи	Втекающий ток
Диапазон входного напряжения	от 0 до 30 В постоянного тока
Цифровые логические уровни	
Состояние OFF	
Входное напряжение	≤5 B
Входной ток	≤150 мкА

Состояние ON		
Входное напряжение	≥10 B	
Входной ток	≥330 мкА	
Гистерезис		
Входное напряжение	1,7 В минимум	
Входной ток	50 мкА минимум	
Входной импеданс	30 кОм ±5%	
Время установления 1	1 мкс макс.	
Время обновления/передачи ²	7 мкс макс.	

Вывод цифровых сигналов

Тип выходной цепи	Вытекающий ток
Состояние выхода при включении питания	Каналы выключены
Диапазон напряжений внешнего источника питания (V_{sup})	От 6 до 30 В
Непрерывный выходной ток (I_O)	
NI 9375 с пружинными клеммами	
Включены все каналы	125 мА макс. (на канал)
Включен один канал	500 мА макс
На модуль	$0,25 \text{ A}^2$
NI 9375 с разъемом DSUB	
Включены все каналы	100 мА макс. (на канал)
Включен один канал	400 мА макс
На модуль	$0,16 \text{ A}^2$
Выходной импеданс (R_O)	0.3 Ом макс.
Выходное напряжение (V_O)	V_{sup} - $(I_O R_O)$
Защита от обратного напряжения	Нет
Ограничение тока	Нет
Потребление тока от V _{sup}	18 мА

¹ Время установления - время, в течение которого входные сигналы должны стабилизироваться до считывания модулем.

² Время обновления/передачи - максимальное время, которое требуется программному обеспечению для считывания данных из модуля. Время обновления передачи приведено для использования модуля в системе CompactRIO. При использовании в других системах на это время влияют программный драйвер и системные задержки.

^{6 |} ni.com | Технические характеристики NI 9375

Время обновления/передачи ³	7 мкс макс.
Задержка распространения ⁴	500 мкс макс.

Сопутствующая информация

Допустимый ток на модуль на странице 5

Требования к питанию

Мощность, потребляемая из шасси	
Активный режим	450 мВт, макс.
Спящий режим	25 мкВт, макс.
Рассеивание теплоты (при 70°C)	
Активный режим	1,5 Вт, макс.
Спящий режим	0,6 Вт, макс.

Физические характеристики

Если модуль необходимо очистить, протрите его сухой тканью.

Совет: За получением чертежей и трехмерных моделей модуля С-серии и разъемов, посетите страницу ni.com/dimensions и выполните поиск по номеру модуля.

Подключение пружинных клемм	
Провод	медный проводник толщиной от $0,08 \text{ мм}^2$ до $1,0 \text{ мм}^2$ ($28 \text{ AWG} - 18 \text{ AWG}$)
Длина оголенной части	7 мм (0,24 дюйма) изоляции, снятой с конца
Предельная температура эксплуатации	90 °С минимум
Проводников на пружинную клемму	Один на пружинную клемму
Крепление разъема	
Тип крепления	Предоставляются винтовые фланцы
Крутящий момент для винтовых фланцев	0,2 Н · м

 $^{^3}$ Время обновления/передачи - максимальное время, которое требуется программному обеспечению для записи данных в модуль. Время обновления/передачи приведено для использования модуля в системе CompactRIO. При использовании в других системах на это время влияют программный драйвер и системные задержки.

Задержка распространения - время, требуемое для изменения состояния выходных каналов после записи в них

Bec		
NI 9375 с пружинными клеммами	159 г	
NI 9375 с разъемом DSUB	148 г	

Безопасные напряжения

Подавайте напряжения только согласно указанным пределам:

Между каналом и СОМ или между V_{sup} и СОМ	30 В постоянного тока, максимум	
Напряжение изоляции		
Между банком DI и банком DO	60 В постоянного тока, максимум	
Между каналами	Изоляции нет	
Между каналом и землей		
Непрерывно	60 В постоянного тока, категория измерений I	
Броски напряжения	$1000~B_{c\kappa_3}$, протестировано на электрическую прочность диэлектрика в течение 5 с	

Категории электробезопасности I соответствуют измерения, выполняемые в схемах, не подключенных непосредственно к распределительной электрической сети (MAINS). MAINS – опасные для жизни силовые электрические сети, используемые для питания оборудования. К этой категории относятся измерения напряжения в специально защищенных вторичных цепях. Объектами измерений являются: уровни сигналов, специальное оборудование, части оборудования с ограниченным потреблением энергии, схемы с питанием от стабилизированных низковольтных источников и электронные схемы.

Внимание! Не подключайте NI 9375 к источникам сигналов и не используйте для измерений, соответствующих категориям II, III или IV.

Примечание: Измерения по категориям САТ I и САТ О эквивалентны. Данные испытательные и измерительные цепи не предназначены для прямого подключения к установкам MAINS категорий измерений САТ II, САТ III или САТ IV.

Зоны повышенной опасности

Стандарт США (UL)	Класс I, Раздел 2, Группы A, B, C, D, Т4; Класс I, Зона 2, АЕх nA IIC Т4
Стандарт Канады (C-UL)	Класс I, Часть 2, Группы A, B, C, D, T4; Класс I, Зона 2, AEx nA IIC T4
Стандарты Европейский (ATEX) и международный (IECEx)	Ex nA IIC T4 Gc

Стандарты безопасности и опасных зон

Изделие соответствует требованиям следующих стандартов по безопасности электрооборудования для измерений, управления и лабораторного применения:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1
- EN 60079-0:2012, EN 60079-15:2010
- IEC 60079-0: Ed 6, IEC 60079-15; Ed 4
- UL 60079-0; Ed 5, UL 60079-15; Ed 3
- CSA 60079-0:2011, CSA 60079-15:2012

Примечание: Информацию о сертификатах UL и других сертификатах безопасности вы можете найти на товарной этикетке или в разделе *Онлайнсертификация*.

Электромагнитная совместимость

Изделие удовлетворяет требованиям следующих стандартов по электромагнитной совместимости (ЭМС) электрооборудования для измерений, управления и лабораторного применения:

- EN 61326-1 (IEC 61326-1): Излучения, Класс А; Промышленные требования к помехозащищенности
- EN 55011 (CISPR 11): Излучения; Группа 1, Класс А
- AS/NZS CISPR 11: Группа 1; Класс А
- FCC 47 CFR Часть 15В: Излучения, Класс А
- ICES-001: Излучения, Класс A

Примечание: За получением деклараций и сертификатов о соответствии требованиям стандартов по электромагнитной совместимости обратитесь к разделу *Онлайн-сертификация*.

Соответствие требованиям Совета Европы С €

Изделие соответствует основным требованиям следующих директив СЕ:

- 2014/35/EU; Директива по безопасности низковольтного оборудования
- 2014/30/ЕU; Директива по ЭМС.
- 94/9/ЕС; Потенциально взрывоопасные атмосферы (ATEX)

Онлайн-сертификация

Для получения дополнительной информации о соответствии нормативным требованиям обратитесь к Декларации о соответствии» (DoC) Чтобы получить сертификаты и Декларацию о соответствии этого изделия, откройте страницу ni.com/certification, выполните поиск по серии и номеру модели и щелкните по соответствующей ссылке в столбце Certification.

Устойчивость к ударам и вибрации

Для удовлетворения этим требованиям вы должны смонтировать систему на панель.

Вибрации при эксплуатации	
Случайные (IEC 60068-2-64)	5 д _{скз} , от 10 Гц до 500 Гц
Синусоидальные (IEC 60068-2-6)	5 g, от 10 Гц до 500 Гц
Удары при эксплуатации	30 g, 11 мс, полупериод синуса; 50 g, 3 мс, полупериод синуса; 18 ударов в 6 направлениях

Условия эксплуатации

Обратитесь к руководству по эксплуатации используемого вами шасси для получения дополнительной информации об удовлетворении этих характеристик.

Температура при эксплуатации (IEC 60068-2-1, IEC 60068-2-2)	от -40 °C до 70 °C
Температура при хранении (IEC 60068-2-1, IEC 60068-2-2)	от -40 °C до 85 °C
Класс защиты	IP 40
Относительная влажность при эксплуатации (IEC 60068-2-78)	от 10% до 90%, без конденсата
Относительная влажность при хранении (IEC 60068-2-78)	от 5% до 95%, без конденсата
Степень загрязнения	2
Максимальная высота над уровнем моря	2 000 м

Для эксплуатации только в помещении.

Охрана окружающей среды

NI разрабатывает и производит продукцию с учетом требований по защите окружающей среды и принимает во внимание, что отказ от использования некоторых опасных веществ при изготовлении изделий полезен как для среды обитания, так и для потребителей.

Дополнительная информация по защите окружающей среды находится на странице Минимизации нашего воздействия на окружающую среду по адресу ni.com/environment. Эта страница содержит положения и директивы по охране окружающей среды, которые соблюдает компания NI, а также другая информация о защите окружающей среды, не включенная в настоящий документ.

Утилизация электрического и электронного оборудования (WEEE)

X

Покупателям из стран ЕС: По окончании жизненного цикла все изделия должны быть утилизированы в соответствии с местными законами и правилами. Более подробную информацию об утилизации оборудования NI в вашей стране вы можете узнать на странице ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息, 请登录 ni.com/environment/rohs china。 (Для получения информации о директиве по ограничению вредных веществ в Китае, обратитесь на страницу ni.com/environment/rohs china.)

Обратитесь к документу NI Trademarks and Logo Guidelines на сайте ni.com/trademarks для получения дополнительной информации о торговых марках National Instruments. Названия других упомянутых в данном руководстве изделий и производителей являются торговыми марками или торговыми именами соответствующих компаний. Для получения информации о патентах, которыми защищены продукция или технологии National Instruments, выполните команду Help»Patents из главного меню вашего программного обеспечения, откройте файл patents.txt на имеющемся у вас компакт-диске или откройте документ National Instruments Patent Notice на странице ni.com/patents. Информацию о лицензионном соглашении с конечным пользователем (EULA), а также правовые положения сторонних производителей вы можете найти в файле readme вашего продукта NI. Обратитесь к документу Export Compliance Information на странице ni.com/ legal/export-compliance за глобальными принципами торговой политики NI. а также для получения необходимых кодов HTS, ECCN и других данных об экспорте/импорте. NI НЕ ДАЕТ НИКАКИХ ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ ГАРАНТИЙ ОТНОСИТЕЛЬНО ТОЧНОСТИ ЭТОЙ ИНФОРМАЦИИ И НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ОШИБКИ. Для покупателей из правительства США: Данные, содержащиеся в этом руководстве, были разработаны на личные средства и подпадают под действие применимых ограниченных прав и ограниченных прав на данные в порядке, предусмотренном законами FAR 52.227-14, DFAR 252.227-7014 и DFAR 252.227-7015. © 2011-2016 National Instruments. All rights reserved. 374644А-02 Февраль 2016